Ubuntu Linux folding..... time to see how it goes

Mike

hmmm....
Feb 17, 2007
2,184
0
36
San Angelo, TX
No, from my experience, interrupting a job and changing memory or CPU's doesn't crash.

At least not yet. I've done it a few times so far.

There is a new Linux client on the way for SMP/BigAdv. Rumor has it that it is FAST on AMD chips.

I need a Linux app that monitors true CPU temp and true CPU clockspeed. Everything I've tried so far doesn't work. Without those, I can't overclock in Linux.

I missed this first round, can't wait.
 
Last edited:

C.C.Reed

New member
May 1, 2008
91
0
0
I know this is a Linux thread but I have a standard version of Server 2008 R2 and a cooked version from the 4 Horsemen. It is made to look and act like Win 7.

Works in all 35 Language packs available for R2.

-> Added W7 Boot Screen
-> Added W7 Themes from W7 Pro

-> Added 2 Custom Themes
-> Added Custom Logons Screens

-> Installed W7 Aero Cursors
-> Installed W7 Sidebar
-> Installed W7 Sticky Notes
-> Installed W7 Games (All users)

-> Enabled Windows Audio
-> Enabled .NET Framework 3.5 SP1
-> Enabled Desktop Experience
-> Enabled Themes
-> Enabled Dreamscene
-> Enabled Audio
-> Enabled Wireless Networking
-> Enabled Server Backup

-> Disabled IE Enhanced Security Configuration
-> Disabled Complex Password
-> Disabled Password Expiration
-> Disabled CTRL+ALT+DEL at Startup
-> Disabled Shutdown Event Tracker

-> Uxtheme has been patched

-> Added "Take Ownership" to the right-click context menu
-> Added "Copy File Names" to Context Menu
-> Added "Copy To/Move To" to the right-click context menu
-> Added "Open Command Windows" to the right-click context menu

Preinstalled :

* DirectX Nov 2010 x86/x64
* Microsoft Silverlight 4.0.50917.0 x86/x64
* C++ 2010 x86/x64
* dotNetFx40_Full_x86_x64[/b]


I can put them up somewhere and link it if anyone wants.

:angel:
 

Mike

hmmm....
Feb 17, 2007
2,184
0
36
San Angelo, TX
Reading around on FAH some of the terms used were over my head. So, I looked a little deeper and this data helped me put a picture of what they were talking about in my head.

DD step 6951999 load imb.: force 7.9%

Step Time Lambda
6952000 27808.00000 0.00000

Energies (kJ/mol)
Angle Proper Dih. Ryckaert-Bell. Improper Dih. LJ-14
1.64888e+005 5.45514e+004 9.14854e+004 8.05857e+003 4.81784e+004
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
4.34404e+004 1.68298e+006 -1.29561e+005 -1.52356e+007 -2.22918e+006
Potential Kinetic En. Total Energy Temperature Pres. DC (bar)
-1.55007e+007 2.82761e+006 -1.26731e+007 3.11665e+002 -1.75818e+002
Pressure (bar) Constr. rmsd
-3.96992e+000 1.66164e-005

Writing checkpoint, step 6952385 at Fri Feb 04 00:40:37 2011


cat'd from work folder.

Also seems to be a way to check performance without having to ctrl-c the work and view the report wrote while exiting.
 

Mike

hmmm....
Feb 17, 2007
2,184
0
36
San Angelo, TX
Reading around on FAH some of the terms used were over my head. So, I looked a little deeper and this data helped me put a picture of what they were talking about in my head.

DD step 6951999 load imb.: force 7.9%

Step Time Lambda
6952000 27808.00000 0.00000

Energies (kJ/mol)
Angle Proper Dih. Ryckaert-Bell. Improper Dih. LJ-14
1.64888e+005 5.45514e+004 9.14854e+004 8.05857e+003 4.81784e+004
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
4.34404e+004 1.68298e+006 -1.29561e+005 -1.52356e+007 -2.22918e+006
Potential Kinetic En. Total Energy Temperature Pres. DC (bar)
-1.55007e+007 2.82761e+006 -1.26731e+007 3.11665e+002 -1.75818e+002
Pressure (bar) Constr. rmsd
-3.96992e+000 1.66164e-005

Writing checkpoint, step 6952385 at Fri Feb 04 00:40:37 2011


cat'd from work folder.

Also seems to be a way to check performance without having to ctrl-c the work and view the report wrote while exiting.

Looks to me like viewing this latest wu log ( for me wudata_04.log ) gives a checkpoint time stamp which I think I can use when I have to stop the fahcore process. I think this will help me from corrupting the file if I stop the process knowing I am not during a write stage. Also think I can will not repeat so much work as I stop and start the process several times tinkering. What do you all think?

Interesting data also. :eek:

- Digital signature verified

Project: 6900 (Run 18, Clone 15, Gen 25)

Assembly optimizations on if available.
Entering M.D.
Completed 0 out of 250000 steps (0%)
Completed 2500 out of 250000 steps (1%)
Completed 5000 out of 250000 steps (2%)
Completed 7500 out of 250000 steps (3%)
mike@mike-desktop:~/folding/winefah6/work$ cat wudata_04.log
Log file opened on Fri Feb 04 18:17:05 2011
Host: unknown pid: 56 nodeid: 0 nnodes: 1
The Gromacs distribution was built Unknown date by
Anonymous@unknown [CMAKE] (Windows-5.2 x86)


:) G R O M A C S (-:

Groningen Machine for Chemical Simulation

:) VERSION 4.0.99_development_20090605 (-:


Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
Copyright (c) 1991-2000, University of Groningen, The Netherlands.
Copyright (c) 2001-2008, The GROMACS development team,
check out http://www.gromacs.org for more information.


:) mdrun (-:


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
molecular simulation
J. Chem. Theory Comput. 4 (2008) pp. 435-447
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
Berendsen
GROMACS: Fast, Flexible and Free
J. Comp. Chem. 26 (2005) pp. 1701-1719
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
E. Lindahl and B. Hess and D. van der Spoel
GROMACS 3.0: A package for molecular simulation and trajectory analysis
J. Mol. Mod. 7 (2001) pp. 306-317
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
H. J. C. Berendsen, D. van der Spoel and R. van Drunen
GROMACS: A message-passing parallel molecular dynamics implementation
Comp. Phys. Comm. 91 (1995) pp. 43-56
-------- -------- --- Thank You --- -------- --------

Input Parameters:
integrator = md
nsteps = 250000
init_step = 6250000
nstcalcenergy = 1
ns_type = Grid
nstlist = 5
ndelta = 2
nstcomm = 1
comm_mode = Linear
nstlog = 1000
nstxout = 250000
nstvout = 250000
nstfout = 0
nstenergy = 1000
nstxtcout = 25000
init_t = 0
delta_t = 0.004
xtcprec = 1000
nkx = 130
nky = 130
nkz = 256
pme_order = 4
ewald_rtol = 1e-005
ewald_geometry = 0
epsilon_surface = 0
optimize_fft = FALSE
ePBC = xyz
bPeriodicMols = FALSE
bContinuation = TRUE
bShakeSOR = FALSE
etc = V-rescale
epc = Berendsen
epctype = Isotropic
tau_p = 10
ref_p (3x3):
ref_p[ 0]={1.00000e+000, 0.00000e+000, 0.00000e+000}
ref_p[ 1]={0.00000e+000, 1.00000e+000, 0.00000e+000}
ref_p[ 2]={0.00000e+000, 0.00000e+000, 1.00000e+000}
compress (3x3):
compress[ 0]={1.00000e-004, 0.00000e+000, 0.00000e+000}
compress[ 1]={0.00000e+000, 1.00000e-004, 0.00000e+000}
compress[ 2]={0.00000e+000, 0.00000e+000, 1.00000e-004}
refcoord_scaling = No
posres_com (3):
posres_com[0]=0.00000e+000
posres_com[1]=0.00000e+000
posres_com[2]=0.00000e+000
posres_comB (3):
posres_comB[0]=0.00000e+000
posres_comB[1]=0.00000e+000
posres_comB[2]=0.00000e+000
andersen_seed = 815131
rlist = 1.2
rlistlong = 1.2
rtpi = 0.05
coulombtype = PME
rcoulomb_switch = 1
rcoulomb = 1.2
vdwtype = Shift
rvdw_switch = 1
rvdw = 1.2
epsilon_r = 1
epsilon_rf = 1
tabext = 1.5
implicit_solvent = No
gb_algorithm = Still
gb_epsilon_solvent = 80
nstgbradii = 1
rgbradii = 2
gb_saltconc = 0
gb_obc_alpha = 1
gb_obc_beta = 0.8
gb_obc_gamma = 4.85
gb_dielectric_offset = 0.009
sa_algorithm = No
sa_surface_tension = 2.092
DispCorr = AllEnerPres
free_energy = no
init_lambda = 0
delta_lambda = 0
n_foreign_lambda = 0
sc_alpha = 0
sc_power = 0
sc_sigma = 0.3
nstdhdl = 10
nwall = 0
wall_type = 9-3
wall_atomtype[0] = -1
wall_atomtype[1] = -1
wall_density[0] = 0
wall_density[1] = 0
wall_ewald_zfac = 3
pull = no
disre = No
disre_weighting = Equal
disre_mixed = FALSE
dr_fc = 1000
dr_tau = 1.25
nstdisreout = 100
orires_fc = 0
orires_tau = 0
nstorireout = 100
dihre-fc = 1000
em_stepsize = 0.1
em_tol = 10
niter = 20
fc_stepsize = 0
nstcgsteep = 1000
nbfgscorr = 10
ConstAlg = Lincs
shake_tol = 0.0001
lincs_order = 4
lincs_warnangle = 90
lincs_iter = 1
bd_fric = 0
ld_seed = 1993
cos_accel = 0
deform (3x3):
deform[ 0]={0.00000e+000, 0.00000e+000, 0.00000e+000}
deform[ 1]={0.00000e+000, 0.00000e+000, 0.00000e+000}
deform[ 2]={0.00000e+000, 0.00000e+000, 0.00000e+000}
userint1 = 0
userint2 = 0
userint3 = 0
userint4 = 0
userreal1 = 0
userreal2 = 0
userreal3 = 0
userreal4 = 0
grpopts:
nrdf: 2.00693e+006 175421
ref_t: 310 310
tau_t: 10 10
anneal: No No
ann_npoints: 0 0
acc: 0 0 0
nfreeze: N N N
energygrp_flags[ 0]: 0
efield-x:
n = 0
efield-xt:
n = 0
efield-y:
n = 0
efield-yt:
n = 0
efield-z:
n = 0
efield-zt:
n = 0
bQMMM = FALSE
QMconstraints = 0
QMMMscheme = 0
scalefactor = 1
qm_opts:
ngQM = 0

Initializing Domain Decomposition on 8 nodes
Dynamic load balancing: auto
Will sort the charge groups at every domain (re)decomposition
Initial maximum inter charge-group distances:
two-body bonded interactions: 0.600 nm, LJ-14, atoms 90463 90485
multi-body bonded interactions: 0.600 nm, Proper Dih., atoms 90463 90485
Minimum cell size due to bonded interactions: 0.660 nm
Maximum distance for 5 constraints, at 120 deg. angles, all-trans: 0.776 nm
Estimated maximum distance required for P-LINCS: 0.776 nm
This distance will limit the DD cell size, you can override this with -rcon
Using 0 separate PME nodes
Scaling the initial minimum size with 1/0.8 (option -dds) = 1.25
Optimizing the DD grid for 8 cells with a minimum initial size of 0.970 nm
The maximum allowed number of cells is: X 17 Y 17 Z 39
Domain decomposition grid 8 x 1 x 1, separate PME nodes 0
PME domain decomposition: 8 x 1 x 1
Domain decomposition nodeid 0, coordinates 0 0 0

Table routines are used for coulomb: TRUE
Table routines are used for vdw: TRUE
Will do PME sum in reciprocal space.

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
U. Essman, L. Perela, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen
A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------

Will do ordinary reciprocal space Ewald sum.
Using a Gaussian width (1/beta) of 0.384195 nm for Ewald
Using shifted Lennard-Jones, switch between 1 and 1.2 nm
Cut-off's: NS: 1.2 Coulomb: 1.2 LJ: 1.2
Long Range LJ corr.: <C6> 4.3321e-004, <C12> 6.2589e-007
System total charge: 0.000
Generated table with 1350 data points for Ewald.
Tabscale = 500 points/nm
Generated table with 1350 data points for LJ6Shift.
Tabscale = 500 points/nm
Generated table with 1350 data points for LJ12Shift.
Tabscale = 500 points/nm
Generated table with 1350 data points for 1-4 COUL.
Tabscale = 500 points/nm
Generated table with 1350 data points for 1-4 LJ6.
Tabscale = 500 points/nm
Generated table with 1350 data points for 1-4 LJ12.
Tabscale = 500 points/nm

Enabling SPC-like water optimization for 334489 molecules.

Configuring nonbonded kernels...
Configuring standard C nonbonded kernels...
Testing ia32 SSE support... present.



Initializing Parallel LINear Constraint Solver

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess
P-LINCS: A Parallel Linear Constraint Solver for molecular simulation
J. Chem. Theory Comput. 4 (2008) pp. 116-122
-------- -------- --- Thank You --- -------- --------

The number of constraints is 87709
There are inter charge-group constraints,
will communicate selected coordinates each lincs iteration
5256 constraints are involved in constraint triangles,
will apply an additional matrix expansion of order 4 for couplings
between constraints inside triangles

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- --- Thank You --- -------- --------


Linking all bonded interactions to atoms
There are 245604 inter charge-group exclusions,
will use an extra communication step for exclusion forces for PME
There are 7008 inter charge-group virtual sites,
will an extra communication step for selected coordinates and forces

The initial number of communication pulses is: X 1
The initial domain decomposition cell size is: X 2.09 nm

The maximum allowed distance for charge groups involved in interactions is:
non-bonded interactions 1.200 nm
(the following are initial values, they could change due to box deformation)
two-body bonded interactions (-rdd) 1.200 nm
multi-body bonded interactions (-rdd) 1.200 nm
virtual site constructions (-rcon) 2.090 nm
atoms separated by up to 5 constraints (-rcon) 2.090 nm

When dynamic load balancing gets turned on, these settings will change to:
The maximum number of communication pulses is: X 1
The minimum size for domain decomposition cells is 1.200 nm
The requested allowed shrink of DD cells (option -dds) is: 0.80
The allowed shrink of domain decomposition cells is: X 0.57
The maximum allowed distance for charge groups involved in interactions is:
non-bonded interactions 1.200 nm
two-body bonded interactions (-rdd) 1.200 nm
multi-body bonded interactions (-rdd) 1.200 nm
virtual site constructions (-rcon) 1.200 nm
atoms separated by up to 5 constraints (-rcon) 1.200 nm


Making 1D domain decomposition grid 8 x 1 x 1, home cell index 0 0 0

Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
0: rest

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
G. Bussi, D. Donadio and M. Parrinello
Canonical sampling through velocity rescaling
J. Chem. Phys. 126 (2007) pp. 014101
-------- -------- --- Thank You --- -------- --------

There are: 1091177 Atoms
There are: 7008 VSites
Charge group distribution at step 6250000: 50287 50145 50357 50160 50176 49999 50005 50018
Grid: 20 x 25 x 56 cells
Initial temperature: 311.726 K

Started mdrun on node 0 Fri Feb 04 18:17:08 2011

Step Time Lambda
6250000 25000.00000 0.00000

Energies (kJ/mol)
Angle Proper Dih. Ryckaert-Bell. Improper Dih. LJ-14
1.65425e+005 5.43800e+004 9.53976e+004 8.04033e+003 4.88125e+004
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
3.86197e+004 1.69607e+006 -1.29435e+005 -1.52350e+007 -2.22672e+006
Potential Kinetic En. Total Energy Temperature Pres. DC (bar)
-1.54844e+007 2.82855e+006 -1.26559e+007 3.11769e+002 -1.75477e+002
Pressure (bar) Constr. rmsd
3.13312e+001 1.66050e-005

DD step 6250004 load imb.: force 7.6%

DD step 6250999 load imb.: force 8.4%

Step Time Lambda
6251000 25004.00000 0.00000

Energies (kJ/mol)
Angle Proper Dih. Ryckaert-Bell. Improper Dih. LJ-14
1.65629e+005 5.49213e+004 9.40889e+004 8.19375e+003 4.89660e+004
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
3.92439e+004 1.69537e+006 -1.29432e+005 -1.52331e+007 -2.22668e+006
Potential Kinetic En. Total Energy Temperature Pres. DC (bar)
-1.54828e+007 2.82891e+006 -1.26539e+007 3.11808e+002 -1.75468e+002
Pressure (bar) Constr. rmsd
1.35638e+001 1.66800e-005

Writing checkpoint, step 6251420 at Fri Feb 04 18:47:12 2011

DD step 6251999 load imb.: force 8.1%

Step Time Lambda
6252000 25008.00000 0.00000

Energies (kJ/mol)
Angle Proper Dih. Ryckaert-Bell. Improper Dih. LJ-14
1.65070e+005 5.47627e+004 9.45788e+004 7.88688e+003 4.91127e+004
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
3.86795e+004 1.68979e+006 -1.29441e+005 -1.52292e+007 -2.22685e+006
Potential Kinetic En. Total Energy Temperature Pres. DC (bar)
-1.54856e+007 2.82983e+006 -1.26558e+007 3.11909e+002 -1.75494e+002
Pressure (bar) Constr. rmsd
-1.26946e+001 1.65294e-005

Writing checkpoint, step 6252750 at Fri Feb 04 19:17:13 2011

DD step 6252999 load imb.: force 8.1%

Step Time Lambda
6253000 25012.00000 0.00000

Energies (kJ/mol)
Angle Proper Dih. Ryckaert-Bell. Improper Dih. LJ-14
1.65706e+005 5.42694e+004 9.42657e+004 7.99963e+003 4.87231e+004
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
3.87681e+004 1.69313e+006 -1.29460e+005 -1.52320e+007 -2.22701e+006
Potential Kinetic En. Total Energy Temperature Pres. DC (bar)
-1.54856e+007 2.82599e+006 -1.26596e+007 3.11486e+002 -1.75545e+002
Pressure (bar) Constr. rmsd
1.58885e+000 1.66042e-005

DD step 6253999 load imb.: force 8.1%

Step Time Lambda
6254000 25016.00000 0.00000

Energies (kJ/mol)
Angle Proper Dih. Ryckaert-Bell. Improper Dih. LJ-14
1.65915e+005 5.47355e+004 9.51944e+004 8.21076e+003 4.89723e+004
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
3.64490e+004 1.69114e+006 -1.29474e+005 -1.52329e+007 -2.22681e+006
Potential Kinetic En. Total Energy Temperature Pres. DC (bar)
-1.54885e+007 2.82752e+006 -1.26610e+007 3.11655e+002 -1.75583e+002
Pressure (bar) Constr. rmsd
-1.56401e+001 1.70095e-005

Writing checkpoint, step 6254080 at Fri Feb 04 19:47:13 2011

DD step 6254999 load imb.: force 8.0%

Step Time Lambda
6255000 25020.00000 0.00000

Energies (kJ/mol)
Angle Proper Dih. Ryckaert-Bell. Improper Dih. LJ-14
1.65756e+005 5.47912e+004 9.35197e+004 8.02174e+003 4.86743e+004
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
3.87755e+004 1.69443e+006 -1.29467e+005 -1.52363e+007 -2.22666e+006
Potential Kinetic En. Total Energy Temperature Pres. DC (bar)
-1.54885e+007 2.82780e+006 -1.26607e+007 3.11686e+002 -1.75562e+002
Pressure (bar) Constr. rmsd
9.23622e+000 1.67534e-005

Writing checkpoint, step 6255410 at Fri Feb 04 20:17:13 2011

DD step 6255999 load imb.: force 7.9%

Step Time Lambda
6256000 25024.00000 0.00000

Energies (kJ/mol)
Angle Proper Dih. Ryckaert-Bell. Improper Dih. LJ-14
1.65181e+005 5.54490e+004 9.38587e+004 8.11852e+003 4.85561e+004
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
3.71483e+004 1.69778e+006 -1.29449e+005 -1.52405e+007 -2.22671e+006
Potential Kinetic En. Total Energy Temperature Pres. DC (bar)
-1.54905e+007 2.82724e+006 -1.26633e+007 3.11625e+002 -1.75514e+002
Pressure (bar) Constr. rmsd
1.23115e+001 1.64695e-005

Writing checkpoint, step 6256725 at Fri Feb 04 20:47:10 2011

DD step 6256999 load imb.: force 8.0%

Step Time Lambda
6257000 25028.00000 0.00000

Energies (kJ/mol)
Angle Proper Dih. Ryckaert-Bell. Improper Dih. LJ-14
1.65619e+005 5.48933e+004 9.41436e+004 8.16385e+003 4.83836e+004
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
3.98363e+004 1.68688e+006 -1.29451e+005 -1.52326e+007 -2.22643e+006
Potential Kinetic En. Total Energy Temperature Pres. DC (bar)
-1.54905e+007 2.82592e+006 -1.26646e+007 3.11479e+002 -1.75519e+002
Pressure (bar) Constr. rmsd
-5.96527e+001 1.69761e-005

DD step 6257999 load imb.: force 8.5%

Step Time Lambda
6258000 25032.00000 0.00000

Energies (kJ/mol)
Angle Proper Dih. Ryckaert-Bell. Improper Dih. LJ-14
1.65493e+005 5.50370e+004 9.44440e+004 8.04623e+003 4.86930e+004
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
3.80643e+004 1.69025e+006 -1.29472e+005 -1.52373e+007 -2.22668e+006
Potential Kinetic En. Total Energy Temperature Pres. DC (bar)
-1.54934e+007 2.82805e+006 -1.26654e+007 3.11713e+002 -1.75576e+002
Pressure (bar) Constr. rmsd
-7.93909e+000 1.63838e-005

Writing checkpoint, step 6258055 at Fri Feb 04 21:17:10 2011

DD step 6258999 load imb.: force 8.3%

Step Time Lambda
6259000 25036.00000 0.00000

Energies (kJ/mol)
Angle Proper Dih. Ryckaert-Bell. Improper Dih. LJ-14
1.65099e+005 5.47127e+004 9.47805e+004 7.99444e+003 4.85064e+004
Coulomb-14 LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
3.87894e+004 1.69404e+006 -1.29489e+005 -1.52392e+007 -2.22651e+006
Potential Kinetic En. Total Energy Temperature Pres. DC (bar)
-1.54913e+007 2.82580e+006 -1.26655e+007 3.11465e+002 -1.75624e+002
Pressure (bar) Constr. rmsd
8.94608e+000 1.69429e-005


mike@mike-desktop:~/folding/winefah6/work$
 

Mike

hmmm....
Feb 17, 2007
2,184
0
36
San Angelo, TX
I thought I would but, since I use the " Wine " wrapper, FAH does not really support it. I thought I'd wait and get some more info or wait to see if the new Linux core cured the problem. However, I may post a comment regarding the restart to see if anyone else has noticed. What do you think?
 
Last edited: